Updated: ATL Tornado on 88D?

Did the 88D at FFC capture a Tornado ?  Dual Pole data may have picked up some debris.  Survey may tell later today.  Here is a screen shot I took last night while the event was unfolding. The velocity data was not very compelling, but in the previous 3 volume scans there were much better indications of a circulation.

Click images for much larger view

Update: I pulled the archive data from last night. Here are previous volume scans. You can see the progression of the development of the CC min & other radar data.

Updated: Severe Weather Threat Ohio Valley Wednesday-Wednesday Night

Complicated forecast for the Ohio-Valley into West Virginia and Western Pennsylvania, Wednesday into Thursday Morning.  As indicated in last nights discussion, synoptic forcing is very strong and will create favorable conditions for a large area of severe weather as an intense low pressure for this time of year, moves across the Ohio Valley.  The primary forecast problems are the convective mode that the storms take once they develop and whether the downstream ambient environment is contaminated by earlier convection that will disrupt the inflow and stabilize the boundary layer.  This is exactly what happens with the WRF-NMM and WRF-ARW 4KM models, each a little bit differently.  The WRF-4KM NAM CONUS Nest does not, and creates very little convective contamination prior to the main system arriving and develops a very dangerous environment across IL/IN/OH/ Western PA that would support a widespread severe weather event with supercells. While not explicitly, it would likely yield some tornadoes given the intense parameters it is generating.

Below are some animated GIF’s from the WRF-NMM to illustrate the forecast issue of convective contamination of the environment prior to the main forcing/convection related to the surface low.  If this AM convection does not develop across WV/VA as indicated, the stable outflow may not be near as strong and may not provide the cool theta-e values and therefore not weaken the main convective system as much or at all when it arrives late Wednesday night.

WRF-NMM Radar Simulation. Note Convection that develops across WV/VA AM Hours Wed Morning.

WRF-NMM  Note the Theta-e minimum associated with the AM convection across WV/VA mountains that works westward and helps weakens the approaching convective system late Wednesday night as it arrives in OH.

Even as it is,  with some possible convective contamination. The mesocale models are generating some strong indications of a wide spread severe weather event.

Across the Ohio-Valley Wednesday into Wednesday night, the  0-1km helicity and the 0-6km shear will increase as the surface low deepens and the upper level shortwave approaches.  Kinematic forcing will favor the formation of supercells and possibly tornadoes over a fairly large area, but the most favorable location will be just south of the stationary front/warm front which will maximize the 0-1km helicity.

Here is just one of the Updraft Helicity products from the various mesoscale models. This is from the WRF-NMM. It’s developing a long lived Supercell from just west of Chicago and tracking it southeastward. Other supercells develop across Indiana and Ohio. This is one of the longest and most intense updraft helicity values I have seen since observing these parameters.

 

Forecast Sounding 40 Miles South of Chicago, IL  01Z Wednesday Evening. WRF-4KM NAM Nest

Forecast Sounding near Wooster, OH this evening at 00Z. Very Unstable atmosphere in place ahead of main forcing. Supercells and tornadoes are possible if convection can develop  ahead of main convective system. 

While the threat from widespread damaging wind is certainly high and linear mode convection may very well be the primary mode of convection for the duration of this event. I feel that there very well may be a period of time where there are either discrete supercells or embedded supercells with in a line. Given all the parameters, I believe the tornado risk is quite high along and just south of the stationary front from Central IL through IN into OH.  This is a highly conditional forecast, since convective contamination from earlier storms may affect the environment or if the system becomes a large bow-echo or derecho very early in the evolution, then the tornado risk is greatly reduced.

Here is a map outlining the risk area of tornadoes based on all the available guidance through 05Z.

 

Severe Weather Outbreak Likely Friday/Friday Night Across Southern Plains / Midwest

Severe Weather Outbreak Likely Friday Afternoon/Night Midwest – Southern Plains

As an upper level low begins to move eastward, the strong core of the mid and upper level winds will rotate around the upper low. An increasingly favorable kinematic environment for supercells and potentially strong tornadoes will develop from Central Illinois/Central Indiana through Southern Missouri into Eastern/Central Oklahoma and  Northern/Western Arkansas.

The area at greatest risk for strong tornadoes is from Central/Eastern Oklahoma through Southern Missouri into Central Illinois.  Although there will likely be AM storms, some severe, the storms that will develop Friday afternoon and move into Ohio-Valley during the overnight hours are the ones that pose the greatest risk for that area. Boundaries from earlier convection in the day will likely focus localized helicities values over 400 m^2^s which will enhance the tornado potential with storms that develop in non-linear modes. Bulk Richardson Shear values favor supercell storm modes across these areas, at least initially.

Other storms will likely form further south across Oklahoma where the instability will become extreme with surface capes over 5000 and shear values in excess of 40kts. CIN will drop below 25 j/kg by afternoon and supercells should form with the aid of an approaching shortwave. With LCL’s AOB 1000 meters, tornadoes are quite likely, especially across Northeastern OK.

The Maximum Updraft Helicity product from the 4km WRF/ARW has been consistently generating strong supercells across OK, MO, IL Friday Afternoon & Evening.

1 Hour Max Updraft Helicity. Indicate Rotating storms develop late.

Max 1 Hour Updraft Helicity from WRF-ARW

WRF-4KM Simulated Radar 23Z Friday

0-6 KM Shear Increase as Mid-Level Jet Works into the Region

High Surface Dewpoints work northward into IL/IN feeding storms.

Surface CAPE is quite high.

Surface Low over MN and Secondary Low over SW OK will help back Low Level  Winds.

Supercell Composite Parameter indicates likelihood of rotating storms from OK northeastward into IL.

Significant Tornado Parameter indicates risk of strong tornadoes.

0-1Km Helicity 00Z

0-1km Helicity 03Z

250mb RRQ of Jet will enhance Vertical Motion

Upper Level Low will move Eastward with cold pool and wind max

St. Louis, MO Forecast Sounding for Friday Evening.  Small Cap, but supportive of Supercells and possible tornadoes

GFS Forecast Sounding for Springfield, IL for 00Z. Again kinematics and thermodynamics supportive of supercells and tornadoes.

Extreme Instability at Oklahoma City per the GFS Forecast Sounding

-Mike Dross

Freezing Rain will be a Big Problem

Freezing rain will be a big problem across Northern Arkansas and the data also suggest that Western NC may experience some buildup of ice.  An experimental product we are working on in the Wright-Weather labs is a freezing rain accretion product. This is the 60 hour, pretty much direct model output,  graphic from the NAM 4KM WRF-NMM.  Keep in mind that actual ice accretion amounts will be less than the totals on this graphic. This is due to drip loss, that is freezing rain that drips off surface before freezing. Drip loss is highest when the temperature is closest to freezing and the precipitation rate is high.

 

 

Major Winter storm will bring Blizzard conditions to the Northeastern U.S.

A powerful winter storm will bring heavy snow and strong winds to the Northeastern U.S. on Friday.  The models are in good agreement. The NAM-WRF 4KM is producing snowfall totals in excess of 3 feet. In fact, the latest 00Z run tonight is producing amounts of 41.5″ using a 10:1 snowfall ratio.

 

The model animation from the WRF-NMM shows how strong the storm will become
as it moves up the east coast.  Blizzard warnings are in effect for parts of the New England coast.

Added 925 Millibar Winds

Added 925 Mb winds to the NAM, NAM CONUS Nest & HWRF Models. They are in the drop down menus. Should be available with the 10-28-12 12Z runs.

Below is the forecast 925mb winds (just above the surface) as Sandy makes landfall. Winds of 95 knots are forecast  by the HWRF near Long Island. Mixing of these winds near surface by heavy rain showers will likely transport gust to 70 knots at times as the strong gradient north of the center rotates through.